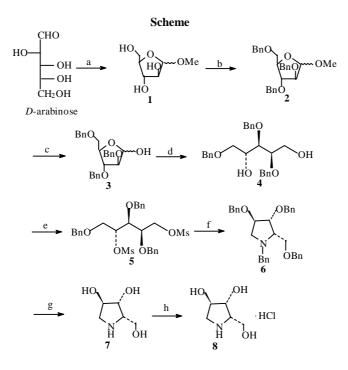
Synthesis of 2S-Hydroxymethyl-3R, 4R-dihydroxypyrrolidine


Zhen CHEN, Ren Yun WANG, Li Lian ZHU*, Xiao Tian LIANG

Institute of Materia Medica, Peking Union Medical College, The Chinese Academy of Medical Sciences, Beijing 100050

Abstract: The sythesis of 2*S*-hydroxymethyl-3*R*, 4*R*-dihydroxypyrrolidine from *D*-arabinose was described in this paper.

Keywords: Polydroxylated pyrrolidine, 2*S*-hydroxymethyl-3*R*, 4*R*-dihydroxypyrrolidine, *D*-arabinose.

Many polyhydroxylated alkaloids exhibit glycosidase inhibitory activities¹. Polyhyroxylated pyrrolidine is a type of important alkaloidal glycosidase inhibitors². For example, 2*R*-hydroxymethyl-3*R*, 4*R*-dihydroxypyrrolidine (1,4 – dideoxy –1,4 –imino – D – arabinitol), a naturally occurring polyhydroxylated pyrrolidine³, is a potent inhibitor of α - glucosidase⁴. Prompted by interests in the remarkable physiological effects, some polyhydroxylated pyrrolidine and their derivatives have been synthesized^{4,5}. In this paper, we describe the synthesis of 2*S*-hydroxymethyl-3*R*, 4*R*-dihydroxypyrrolidine from D– arabinose (**Scheme**).

Zhen CHEN et al.

a) H₂SO₄/CH₃OH, anhydrous CaSO₄;

- b) BnBr, NaH, n-Bu₄NI in DMF and THF, r.t;
- c) CH₃COOH/6Mol/LHCl, 65°C;
- d) NaBH₄ in ethenol;
- e) CH₃SO₂Cl, Et₃N, CH₂Cl₂;
- f) BnNH₂ in toluene, reflux;
- g) H₂, 10% Pd-C, CH₃COOH, 40psi, 50°C;
- h) HCl, CH₃OH.

As shown in **Scheme**, D – arabinose was converted to 2, 3, 5 – tri – O – benzylarabinofuranose **3** by three steps (overall yield 32%). Reduction of **3** with sodium borohydride in ethanol gave 2, 3, 5 – tri – O – benzyl arabinol **4** (93% yield), followed by esterification of the resulting diol with mesyl chloride in methylene in the presence of Et₃N to form the dimesylate **5** (93% yield). Then, the dimesylate reacted with benzylamine in toluene to give the protected five-numbered homoazasugar **6** (79% yield). Finally, the benzyl groups were removed by catalytic hydrogenolysis on 10% palladium-carbon to give the title compound **7**⁶ in almost quantitative yield. Its hydrochloride **8** is a white solide with m.p. 121-123°C. Further synthetic and pharmacological studies of the title compound and its derivatives are in progress.

Acknowledgments

This work was supported by the National Natural Science Foundation of China and the Natural Science Foundation of Beijing.

References and Notes

- 1. a) B. Winchester, G. W. J. Fleet, *Glycobiology*, **1992**, *2*, 199.
- b) G. Legler, Adv. Carbohydr. Chem. Biochem, 1990, 48, 319.
- a) N. Asano, E. Tomioka, H. Kizu and K. Matsui, *Carbohydr. Res.*, **1994**, *253*, 235.
 b) N. Asano, K. Oseki, E. Tomioka, H. Kizu and K. Matsui, *Carbohydr. Res.*, **1994**, *259*, 243.
- 3. R. J. Nash, E. A. Bell and J. M. Williams, *Phytochem.*, **1985**, 24, 1620.
- 4. G. W. J. Fleet, S. J. Nicholas, P. W. Smith, S. V. Evans, L. E. Fellows and R. J. Nash, *Tetrahedron Letters*, **1985**, 26(26), 3127.
- 5. a) S. H. Chen and S. J. Danishefsky, *Tetrahedron Letters*, 1990, *31*(16), 2229.
 b) Ducep, Jean-Bernard, Danzin, Charles, E.P. 422,307, 1991.
 c) S. Hiranuma, T. Shimizu, T. Nakata, T. Kajimoto and C. H. Wong, *Tetrahedron Letters*, 1995, *36*(18), 8247.
- 6. Compound 7: $[\alpha]_D$ +4.6 (*c* 0.54, H₂O); EIMS(m/z) 134 (6%, M+1), 102 (100%, M-CH₂OH); ¹H NMR (500MHz, D₂O) δ 2.81 (d, 1H, H-5a), 3.33-3.39 (m, 2H, H-5b and H-2), 3.74 (q, 1H, H-6a), 3.86 (q, 1H, H-6b), 4.18 (br, 1H, H-3), 4.24 (br, 1H, H-4); ¹³C NMR (125Hz, D₂O) δ 49.0 (C-5), 58.2 (C-6), 59.1 (C-2), 75.0 (C-4), 75.4 (C-3).

Received 10 March 1999